
IPA EUROPE : Sylvie Binda Scientific Committee ChairWoman

IPA EU Scientific Workgroup: A need for a scientific conversation & collective thinking in order to develop science & scientific argumentation for the promotion of probiotics

Probiotic criteria publication with ISAPP

Webinars in Collaboration with the International 11th Congress Probiotics, Prebiotics and new Foods

IPA EU Microbiome resilience project

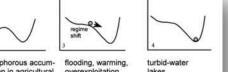
Born in 2016 in IPA EU scientific working group

- Initial purpose : evaluate the scientific consensus behind diet and microbiota and especially the effect of diet enriched with probiotics (living microbes)
- Identify & build a « state of the art » towards a possible submission to authorities

Ecological concepts application to microbiome and human health: Historical perspective

ERNATIONAL BIOTICS ASSOCIATION

First emergence of discussions on ecosystem stability and resilience. (Elton, 1958)


In the 1960s the ecological definitions of "stability" varied depending on individuals and context

Foundations of Ecological Resilience - sitter clear-wate phosphorous accumflooding, warmin lakes ulation in agricultural overexploitation Milital by of predator Lance H. Gunderson Craig R. Allen and C. S. Holling

Initiation of in-depth 1973 discussions on the meaning of ecosystem resilience

"Traditional conservation ecology is based on assessments of ecosystem resilience in the face of landscape disturbance. Resilience depends in turn on growth rates of community members, interactions between members, and nutrient availability ("ecosystem-level factors")."

Holling C. Resilience and stability of ecological systems. Annual review of ecology and systematics. 1973;4:1-23.)

2004

Definitions are established & ecological concepts are defined

Introduction of the

ecological view of the gut

as Relman & Deflethsen

microbiota with precursors

"capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks".

2011

Walker B, Holling CS, Carpenter SR, Kinzig A. Resilience, adaptability and transformability in social-ecological systems. Ecol Soc. 2004 Dec;9(2):5.)

(Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst.. 2004 Dec 15;35:557-81.)

https://www.resalliance.org/key-concepts

How an ecological concept can be translated to a living ecosystem : the microbiome

NATURE Vol 449 18 October 2007 dok10.1038/nature06245

INSIGHT REVIEW

NAS

An ecological and evolutionary perspective on human-microbe mutualism and disease

Les Dethlefsen¹, Margaret McFall-Ngai² & David A. Relman^{1,3,4}

The microbial communities of humans are characteristic and complex mixtures of microorganisms that have co-evolved with their human hosts. The species that make up these communities vary between hosts as a result of restricted migration of microorganisms between hosts and strong ecological interactions within hosts, as well as host variability in terms of diet, genotype and colonization history. The shared evolutionary fate of humans and their symbiotic bacteria has selected for mutualistic interactions that are essential for human health, and ecological or genetic changes that uncouple this shared fate can result in disease. In this way, looking to ecological and evolutionary principles might provide new strategies for restoring and

maintaining human health.

2007

Supplement Article

NUTRITION 70 YEARS

The human microbiome: ecosystem resilience and health

David A Relman

Given the importance of the microbiome for human health, both the stability and the response to disturbance of this microbial ecosystem are crucial issues. Yet, the current understanding of these factors is insufficient. Early data suggest there is relative stability in the microbiome of adults in the absence of gross perturbation, and that long-term stability of the human indigenous microbial communities is maintained not by inertia but by the action of restorative forces within a dynamic system. After brief exposures to some antibiotics, there is an immediate and substantial perturbation and at least a partial recovery of taxonomic composition. Responses to antibiotics are individualized and are influenced by prior experience with the same antibiotic. These findings suggest that the human microbiome has properties of resilience. Besides serving to reveal critical underlying functional attributes, microbial interactions, and keystone species within the indigenous microbiota, the response to disturbance may have value in predicting future instability and disease and in managing the human microbial ecosystem. 0 2012 International Life Sciences institute.

Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation

Les Dethlefsen^a and David A. Relman^{a,b,1}

^aDepartment of Microbiology and Immunology and Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305; and ^bVeterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304

Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved August 17, 2010 (received for review March 15, 2010)

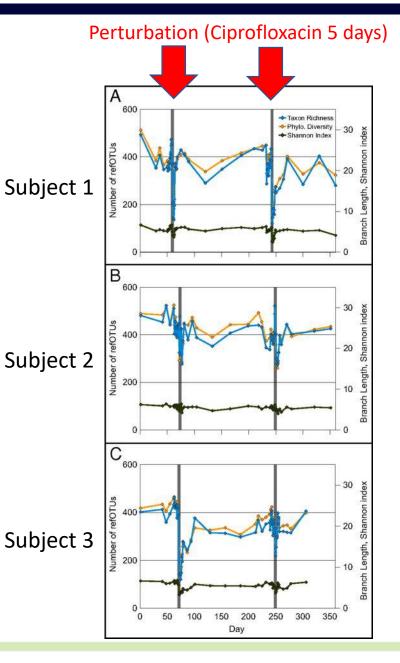
The indigenous human microbiota is essential to the health of the host. Although the microbiota can be affected by many features of modern life, we know little about its responses to disturbance, especially repeated disturbances, and how these changes compare with baseline temporal variation. We examined the distal gut microbiota of three individuals over 10 mo that spanned two courses of the antibiotic ciprofloxacin, analyzing more than 1.7 million bacterial 165 rRNA hypervariable region sequences from 52 to 56 samples per subject. Interindividual variation was the major source of variability between samples. Day-to-day temporal variability was evident but constrained around an average community composition that was stable over several months in the absence of deliberate perturbation. The effect of ciprofloxacin on the gut microbiota was profound and rapid, with a loss of diversity and a shift in community composition occurring within 3-4 d of drug initiation. By 1 wk after the end of each course, communities began to return to their initial state, but the return was often incomplete. Although broadly similar, community changes after ciprofloxacin varied among subjects and between the two courses within subjects. In all subjects, the composition of the gut microbiota stabilized by the end of the experiment but was altered from its initial state. As with other ecosystems, the human distal gut microbiome at baseline is a dynamic regimen with a stable average state. Antibiotic perturbation may cause a shift to an alternative stable state, the full consequences of which remain unknown.

The hygiene hypothesis asserts that increasing rates of autoimmune disorders in the developed world, such as asthma and inflammatory bowel disease, are related to the disruption of the normal interactions within and between the human microbiota and the host (10).

The dynamics of a single complex community over time can reveal more about interactions between community members than a collection of one-time snapshot samples from distinct communities in similar habitats. The interpersonal variation in the composition of the human microbiota implies that the same species may occupy somewhat different niches in different individuals and have different linkages to other taxa, thus displaying different responses to disturbance. However, averaging the effects of a disturbance across multiple individuals may inappropriately treat these diverse phenomena as a single, albeit noisy phenomenon. In contrast, measurements within an individual over time may reveal the range of variation possible in a system governed by the same set of interactions. Time series that span an experimental intervention in a complex community can be particularly useful, because the hypothesized relationships can be examined in potentially different states.

We present here a cultivation-independent survey through time of the composition of the distal gut microbiota of three individuals before, during, and after two exposures to the same antibiotic (in this case, ciprofloxacin). The findings reveal a dynamic ecological

2011

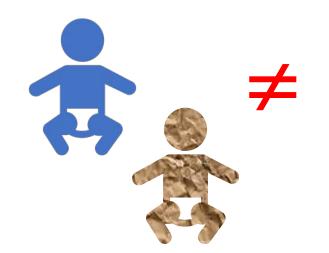


The human microbiome : Ecosystem resilience & health

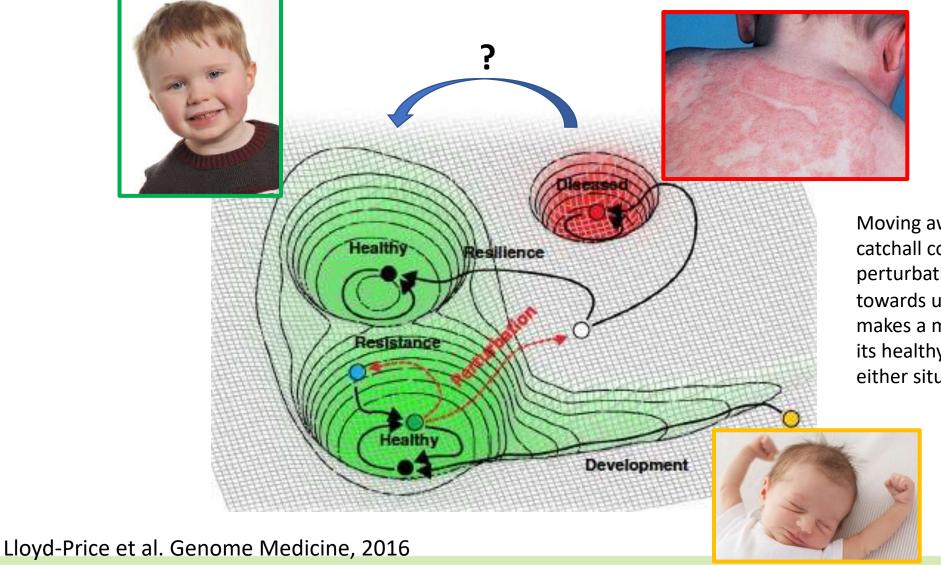
- ⇒ The first to translate ecological concept to the human microbiome : he developped a "perturbation" model by antibiotics in order to
 - ⇒ Demonstrate the applicability of the ecological view of the microbiome
 - $\Rightarrow~$ See the relevance of the observation of the early degradations of the stability landscape ,
 - \Rightarrow ATB treatments can lead to temporary microbiota dysbiosis
 - ⇒ repeated ATB treatments can affect the resilience of the microbiota. Identify the components of the "catastrophic regime shift"

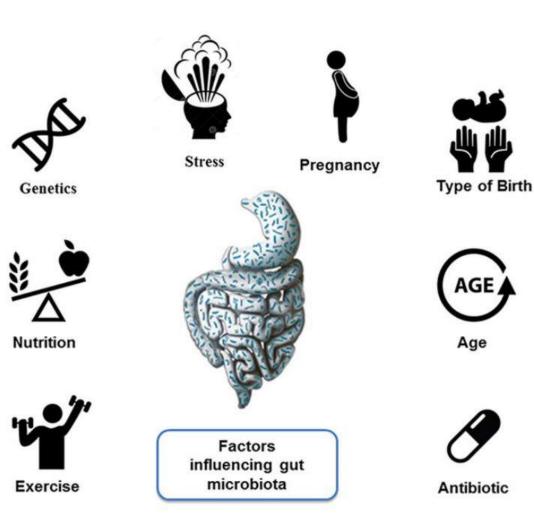
"because we have only a limited understanding of the ecosystem services provided to us by our resident microbiota, caution and additional research are warranted."

David A. Relman, 2012



A living ecosystem





Intestinal microbiota : stable states & trajectories

Moving away from "dysbiosis" as a catchall concept for both transient perturbations and diseased state towards understanding what makes a microbiota bounce back to its healthy "steady-state" from either situations.

Cerda, 2016

Dietary challenges (temporary changes)

- Different source of protein or fats (e.g. plant vs animal)
- FODMAPs
- Lactose/dairy or other food intolerance (inducing diarrhea)

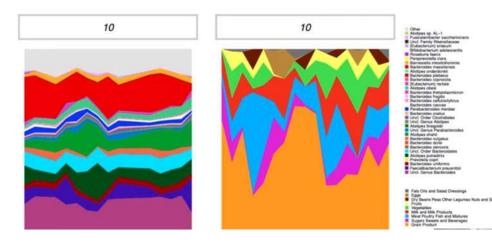
Antibiotics

- Number of prescriptions
- Nature

Sampling procedures

• *i.e.* enemas undertaken before colonoscopy (medical procedure)

RNATIONAL BIOTICS ASSOCIATION	Authors	Methods	Study design	Subjects	Dietshutrients	Microbial response
npact of Diet	Claesson et al. ²⁷³	16s rDNA sequencing	Cross-sectional	178 elderly subjects (age 64–102 years) – community, day hospital, rehabilitation and long-stay subjects	'Community' diet – diverse with low-moderate tathigh fibre 'Long-stay' diet – reduced diversity with moderate – high fat/low-moderate	Towersity Firmicules Coprococcus, Roseburia Diversity Bacteroidetes Parabacteroides, Eubacterium, Anaerotruncus,
n microbiota	D. Discourse	15		Touris and address of a surrey	fibre	Lactonifactor and Coprobacillus
n Power <i>et al</i> , BJN, 2014	De Filippo et al. ⁶⁵²	16 s rDNA sequencing	Cross-sectional	Twenty-nine children (1-6 years) – African children from Burkina	"Western' diet - high tat/ protein/sugar and	† Firmicutes † Enterobacterfaceae
de publications from 2009 to 2012		and blochemical analysis		Faso (n 14) and European children from Florence, Italy (n 15)	low fibre 'Rurai' diet – low tat/protein and high fibre	† Bacteroidetes exclusively present: Prevotella, Xylanibacter,
Temporary						Butynivibrio and Treponema 1 SCFA
change 🔶	De Palma et al. ⁽⁷⁰⁾	FISH and gPCR	Feeding (1 month)	Ten healthy subjects (mean age 30.3 years)	Gluten-free diet (reduced polysaccharide)	 Bilidobacterium, Lactobacillus, Clostridium Illuseburer and Faecalbacterium prausnitzli Enterobacteriaceae and Escherichia col
	Kabeerdoss et al. ⁽⁵³⁾	qPCR	Cross-sectional	Fifty-six healthy female subjects (age 18-27 years): thirty-two vegetatians and twenty-four	Vegetarian diet	Clostridium cluster XIVa Roseburia-Eubacterium rectale butynyl-CoA CoA-transferase gene
	Liszt et al. ⁽⁹⁴⁾	qPCR and PCR-DGGE	Cross-sectional	omnivores Twenty-nine healthy subjects (age 19-34 years) - tifteen vegetartans and fourteen omnivores	Vegetarian diet	† Bacterial DNA tendency for 1 Clostridium cluster IV and † Bacteroides (but not significant)
	Muegge et al. ⁽⁷¹⁾	16s IDNA sequen- ding and shotgun metagenomics	Cross-sectional	Eighteen tean subjects (mean age 59.6 years) – members of a Calorie Restriction Society	Proteins Insoluble dietary fibre	Associated with KEGG orthology groups Associated with bacterial OTU content
→	Waker et al. ⁽⁵⁷⁾	ine agenomics 16 s IDNA sequen- cing and oPCR	Randomised cross-over (3-week intervention)	Fourteen overweight male subjects (age 27-73 years)	Diet high in resistant starch (type III)	→ Ptylum level † Ruminococcus brami and E. rectale † Ruminococcuseae
					Reduced-carbohydrate diet (weight-loss diet)	Oscillbacter valericigenes Finicutes bacteria related to Roseburia and E. rectale Phylum level Collinsella aerotaciens O. valericigenes Finicutes bacteria related to Roseburia and E. rectale
	Wu et al ⁽¹⁷⁾	16s fDNA sequen- cing and shotgun metagenomics	Cross-sectional	Ninety-eight healthy subjects (age 18-40 years)	Fat Fibre	† Bacteroidetes, Actinobacteria Firmicutes, Proteobacteria Bacteroidetes, Actinobacteria
					Animal fat and protein	† Firmicutes, Proteobacteria Positively associated with Bacteroides enterotype
\rightarrow	Wu et al ⁽¹⁷⁾	16s fDNA sequen- cing and shotgun metagenomics	Controlled feeding (10 d	Ten subjects having Bacteroides enterotype (high fatiprotein)	Carbohydrates Low-fat/high-fibre diet or high-fat/low-fibre diet	Positively associated with Prevotella enterotype Changes in the composition of microbiome detectable within 24h of consuming diet; no stable switch in enterotype after 10d
	Zimmer et al. ^(os)	Culture-based methods	intervention) Cross-sectional	295 healthy subjects - 144 vegetarians, 105 vegans and forty-six controls	Vegetarian diet	1 Stool pH
					Vegan diet	 Stool pH Bacteroides spp., Billdobacterium spp., E. col and Enterobacteriaceae spp.

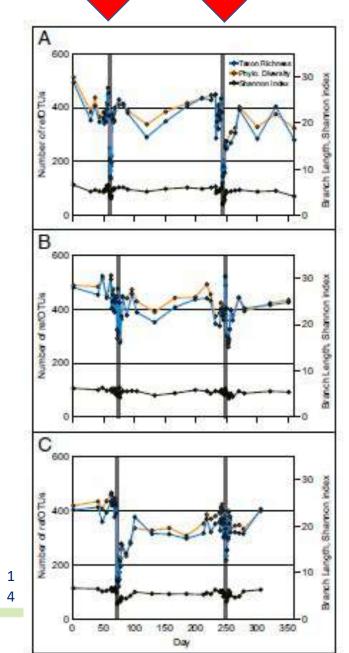


What's a perturbation for microbiota ?


Longitudinal sampling and daily dietary records to model microbiome changes in response to diet

24-h food records and fecal shotgun metagenomes from 34 healthy human subjects collected daily over 17 days

Stable microbiome despite variable dietary intake



Dietary diversity correlates with microbiome stability

Abigail Johnson Integrating Microbiome and Dietary Data Johnson et al., 2019, Cell Host & Microbe 25, 789–802

Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation Dethlefsen and Relman, 2011

 \Rightarrow ATB treatment can lead to temporary microbiota dysbiosis

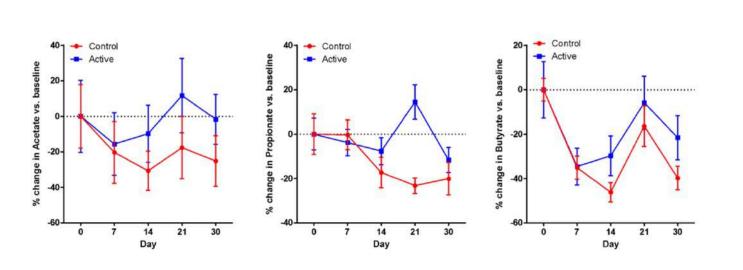
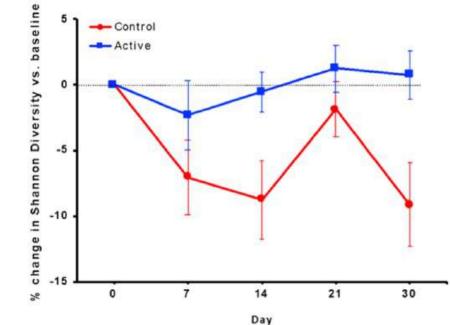

 \Rightarrow Repeted ATB treatments can affect the resilience of the microbiota

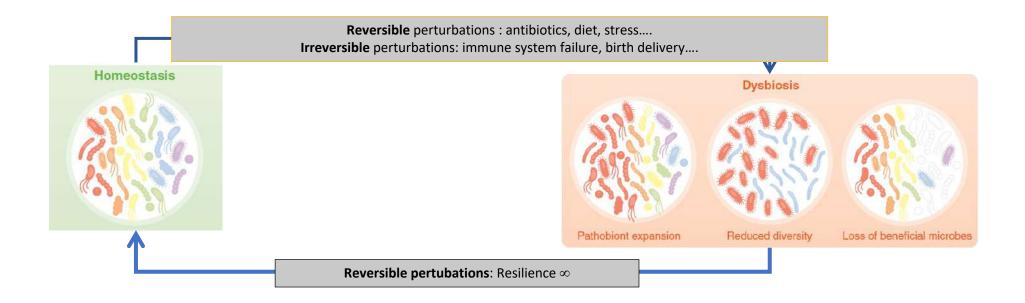
Fig: Measure of biological diversity for samples from 3 subjects (A,B,C) before, during after ciprofloxacin treatment

More recent results on probiotics and microbiota recovery after an antibiotic challenge

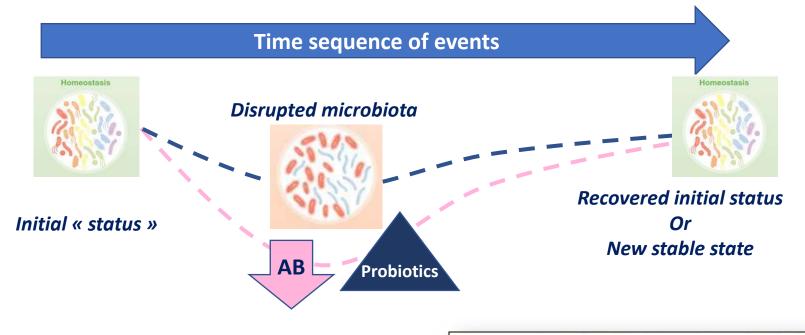

Concurrent administration of amoxicillin/clavulanate and BB-12 yogurt to healthy subjects

significantly smaller decrease in the

fecal SCFA levels


more stable taxonomic profile of the microbiota over time than the control group

Merenstein et al. Nutrients **2021**, 13, 2814.



In 2016, SCIENCE STARTS TO MATURE on a CONSENSUAL VIEW ON UNBALANCED MICROBIOTA (not really on « normal » microbiota)

Use of clinical evidence: Validation of the model of clinical demonstration :

- AB challenge model
- General population
- Adult mainly
- Evaluate different probiotics & different doses
- Follow of disruption period & time for recovery

BMJ Open Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review

Lynne V McFarland

Summary of the « state of the art » work conducted

- Publications between 1991 2016
- Controlled trials
- Antibiotic treatment
- Microbiota assessment
- Healthy subjectsc above 3 years of age (mean age)
 - Diseased subjects included only when receiving antibiotics for respiratory infections, tonsillitis, gastroenteritis or presence of H. pylori

operator	topic	keywords	field
	Microorganisms/products	TS=(Probiotic* or Lactobacili* or Bilidobacteri* or Lactoace* or "lactic acid bacteria" or "saccharomyces boulardii" or "Sboulardii" or "saccharomyces cerevisae" or "Scerevisae" or Yogurt or Yogurt or Yogurt or 'dary product5" or "fermented mill* or "fermented dairy drink" or kefir or "dietary supplement5")	title/abstra
AND	Microbiota	TS=(microbiota or microbiome or flora or microflora or "intestinal ecosystem" or "microbial ecology")	title/abstra
AND	Antibiotics	TS=(antibiotic\$ or antibiotherapy or "antibio therapy" or "antimicrobial" or "antibiotic-associated diarrh?ea" or AAD)	title/abstra
AND	Clinical studies	Tis – (clinical trial" or "multicenter trial" or "multicenter stud" or "randomi2ed trial" or "crossover trial" or "clinical stud" or "anadomi2ed controlled trial" or randomi2ation or "human trials" or "human stud" or "controlled trials" or "double bild" or "pilot stud" or or placebo or voluntees for subject5 or patient5 or elderly or ageing or aged or adult5 or children)	title/abstra
NOT	Animal	TI= (mice or mouse or rat\$ or rodent\$ or murine or broiler\$ or chick* or pig* or porcine or swine or horse\$ or foal\$ or monkey or rabbit\$ or feline or canine or dog\$ or animal or macque* or poultry or aquaculture or calve\$ or pheasant\$ or equine or fed* or crab)	title
NOT	Diseases and other conditions	Ts-fraging or surroughinal or cancer or dential or crister or carlous or valve or urinary or liver or transplantation or surface or subgingival or periodont* or salivary or irratation or 185 or 180 or 11n8 mmatory boxel disease* or "Intrable boxel systems" or pancreatic or "lucerative collis" or croin* or gastectomy or cristally or surgical or hepatic or encephalopathy or pouchitos or 'short small boxel' or orophanyaga or HIV or urethrai or 'n witho'' or chemotherapy or real or kilow or CKD or surgery)	title/abstra
AND	Resilience	TS=[alter* or imbalance or balance or restor* or improve or robustness or baseline or disrupt* or resilience or stability or dynamic or dybiods or resistance or reset? or modul* or monitor* or sequencing or 156 or or metagenom* or FISH or TRFLP or rNNA or PCR or microarray or microbiota or microflora)	title

		population			treatment		result	
	age	n	health status	antibiotics	probiotics	Control	method	resilience
ence		total (Probiotics group) N		name Dose per day and duration	Name Dose Form Duration			
1991	adults mean age 35	20 (N=10)	healthy	1.5g ampicillin /d 7 days	<i>L. acidophilus</i> (9x10 ⁹) + <i>B. bifidum</i> (1.4x10 ⁹) daily in a capsule 7 days	Capsule	culture	partial resilience: anærobic gram-positive cocci, lactobacilli, clostridia and eubacteri increased faster in probiotic group while bifidobacteria increased faster in placebo. I significant differences between groups on t number of veillonella-cocci and bacteroides.Bacteroides were recovered i higher numbers in probiotic

• 21 studies

- 19 strains
- 6 taxa

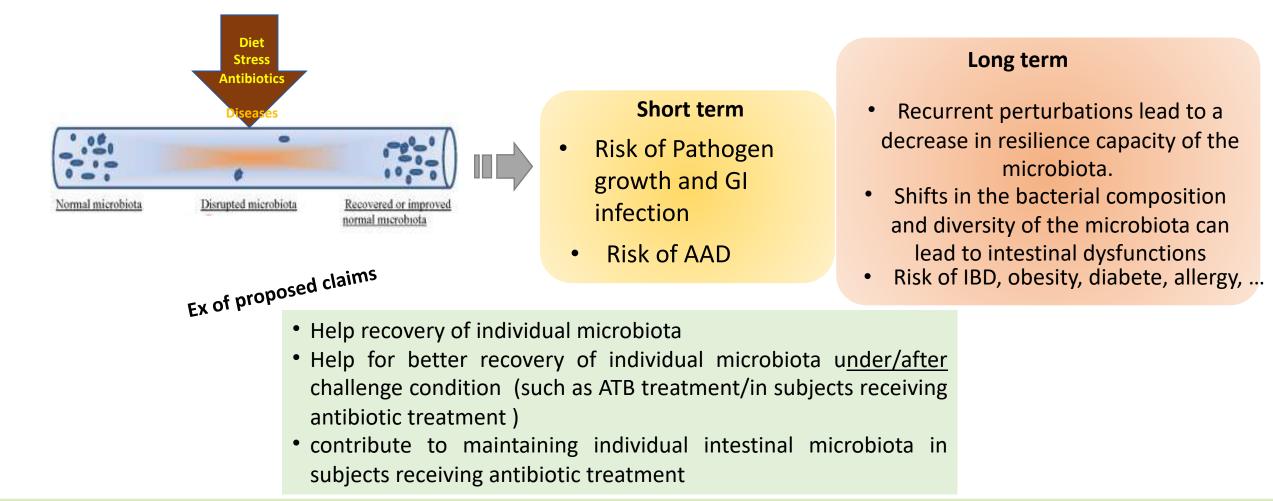
B. animalis subsp. lactis

B. bifidum

L.acidophilus

L casei/paracasei

L. rhamnosus


S. boulardii

Microbiota resilience

Its ability to recover after a « challenge »

Health impact of challenges and impairement of recovery

2018:

Dissemination activities

Mary Ellen Sanders PhD, Sylvie Binda PhD, Seppo Salminen PhD and Karen Scott PhD

Explores the concept of 'resilience' in the context of human physiology, i.e. the ability to remain healthy even when exposed to a stress, or to recover from a stress faster ISAPP Science Blog

JANUARY 16, 2018 RESILIENCE AS A MEASURE OF HEALTH: IMPLICATIONS FOR HEALTH CLAIMS FOR FOODS

Posted at 8.15 are in function, ISAPP Image by ISAP 0.15em

Ansary 16, 2018. By Mary Ellen Sandery IPO, Sylvie Binda IPO, Seppo Salminen IPO Karen Scott IPO

Demonstrating health benefits for healthy people is a challenge funded by those attempting to communicate claims on a health permitting bood, in only graded applicatory transmission calls and another the general application. Therefore, any benefits application to them, the logic goes, must be demonstrated in the generally healthy population.

An old compat has new-found restarting in the context of offering an approach for establishing handle benefits for healthy sources it is the concentrat of esciences in an estological anter, realisence refers to the childity of the eccenters to withman perculations and confinue remain functions, it is maintain healthy own when reasonal for a stress, and phylology, entitioned antities a host to mean healthy own when reasonal for a stress, and to eccenter antities a stress factor. A samily of exempt defininger such as negating antibility of execution attempt and are encoded and the main healthy own when reasonal for a stress, the stress of the stress factor. A samily of exempt defininger such as negating antibility of execution attempt approaches may define a major and the mattempt of the effectors when experiment. Indefaults more able to maintain statility of they execution activity and the samily also such de healther than those ables concert nuintains that hallow. Thus, a boat would be considered to have a beneficial effect if it could increase the endpointed of the concurrent or a definition.

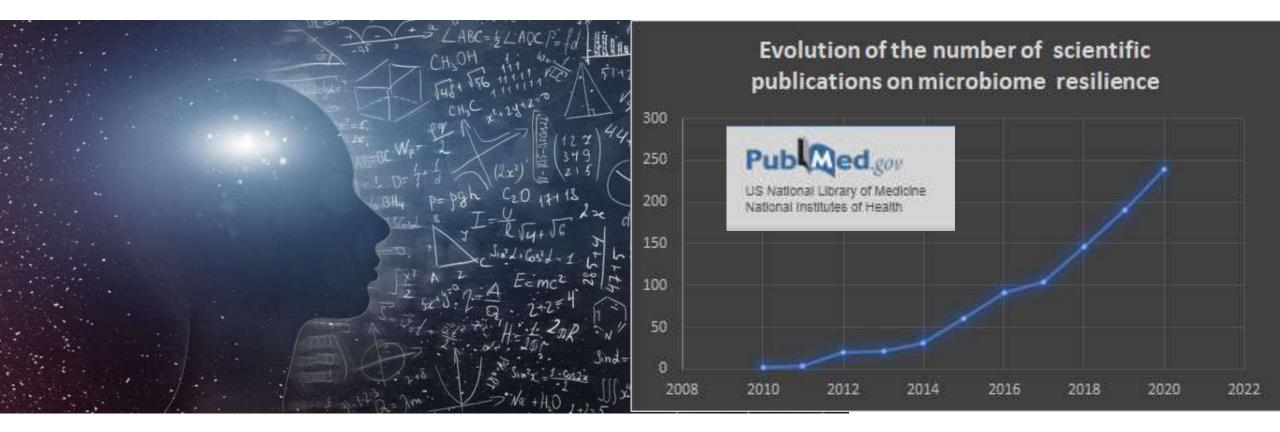
This concept was described in an UPSA guidance document on biological relevant data in scientific assessments

"When subject to a disturbance, a biological pottern entries in a transmert state: a process variable has been changed and the system has not yet resulted stading states. Some systems, including humans, have the capacity to miguide their interme environment and to maintain a stable, relatively constant condition of properties; it is called humestitatic.

In 2019:

We had a 70-pages Scientific Monograph covering old & recent findings

The decision was taken to not submit this as a « dossier »



We were young, we w foolish, we were arrogant, but we were right. Abbie Hoffman BrainyQuote

Microbiota resilience: a topic more than ever attractive within the scientific community

Overview of Existing claims with microbiota & « resilience » concepts

« Probiotics that naturally forms part of the gut flora »

- « Provide live microorganisms that naturally form part of the gut flora »
- « Probiotic that contributes to healthy gut flora »
- « Provides live microorganisms that contribute to healthy gut flora » Canada

"helps to maintain healhy gastrointestinal bacteria population » - South Koera

« supports the balance of the intestinal flora" - Italy

regenenerate the intestinal flora » - Columbia

« Proper diet and regular consumption of food with probiotics, can help to (...)

« helps to maintain a desirable balance of beneficial bacteria in the digestive system » - Singapore

« enhancement of intestinal ecology " - Phlipinnes

« the daily consumption of milk or dairy products which countains live bacteria helps to maintain the intestinal floral » - Chile

Non defined health claim

Non defined health claims:

- "Intestinal microbiota"
- "Balanced microbiota"
- "Beneficial/healthy microbiota"

Non beneficial physiological effects:

- Increasing numbers of bifidobacteria or lactobacilli.
- Decreasing numbers of commensal microorganisms (e.g.
- enterobacteria, clostridia, bacteroides, etc.)
- Changes in gut microbiome composition
- Changes in SCFAs

In august 17, EFSA in its guidance document on biological relevance of data in scientific assessments defines :

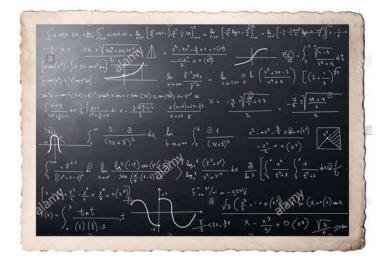
"Resilience represents the amount of disturbance that can be absorbed by a system before the system changes or loses its normal function, or the time taken to return to a stable state, within the normal operation range following the disturbance (Gunderson, 2000). [Reducing] homeostatic capacity ... might be detrimental, whereas increasing the capacity could be beneficial."

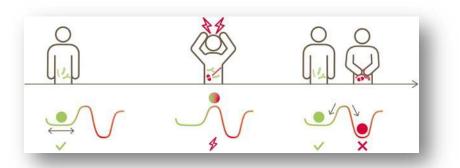
Editorial: Exploring the need to include microbiomes into EFSA's scientific assessments

Caroline Merten, Reinhilde Schoonjans, Diana Di Gioia, Carmen Peláez, Yolanda Sanz, Daniela Maurici and Tobin Robinson In June 2020, EFSA discussed the interest to embark on a thematic area of microbiomes

"How to evaluate the impact on microbiomes by various substances under EFSA assessment?"

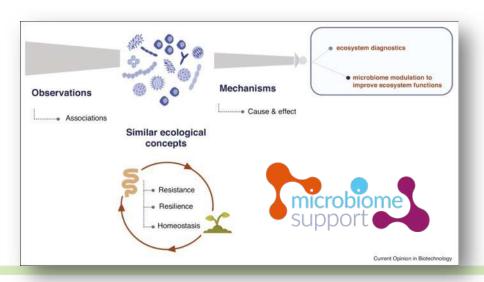
"How to evaluate the impact of microbiomes on human, animal and plant health?" "Extreme and sustained adverse exposure can lead to profound ecological disruptions and a breakdown in the host-microbiome partnership, contributing to adverse health outcomes"


How to define and calculate a resilience index ?


"A quantitative measure of how much the microbiota has deviated [from baseline] and how quickly and fully it has recovered"

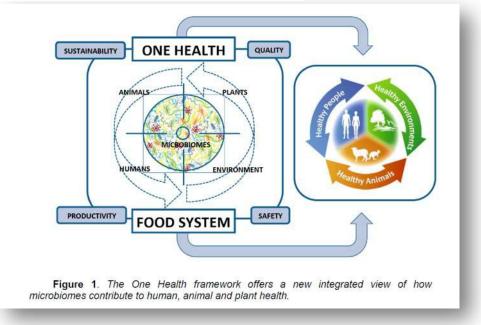
Strong interest in the simplicity of an index integrating the interindividual and complexity

Are we there yet?


Source: Dogra et al. Frontiers in Microbiology, 2020;11:572921. https://www.frontiersin.org/articles/10.3389/fmicb.2020.572921/full

Outputs of recent initiatives

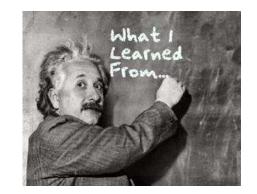
See interesting website (Stanford University) for key current gaps and an ongoing study from the Relman lab


https://med.stanford.edu/relmanlab/projects/resilience-in-the-human-microbiome.html https://humanmicrobiota.weebly.com/about-our-study.html

ITALIAN MICROBIOME INITIATIVE FOR IMPROVED HUMAN HEALTH AND AGRI-FOOD PRODUCTION

Meisner et al 2022, Current Opinion in Biotechnology. DOI:10.1016/j.copbio.2021.08.003

Copyright IPA Europe 2021


Additional Gaps, needs & challenges

- Controlling trials for most common microbiome stressors (known vs unknown confounders?)
- Dietary Strategies for maintenance and restoration of functions, resilience
- What shapes stability and resilience of the microbiome (are all stressors equal for everyone?)
- What are the appropriate scales, durations or other dimensions to describe the microbiome and its response to environmental factors

Take-Home messages & call for action

The study of the microbiome stability is key to understand its relation to health maintenance

Probiotics could play a positive role to support microbiome resilience

(re)Design nutritional interventions in order to demonstrate the impact of diet enriched with live microbes

Join us to go on to elucidate & help contribute to build a consensus

A need for a scientific conversation & collective thinking in order to develop science & scientific argumentation for the promotion of probiotics

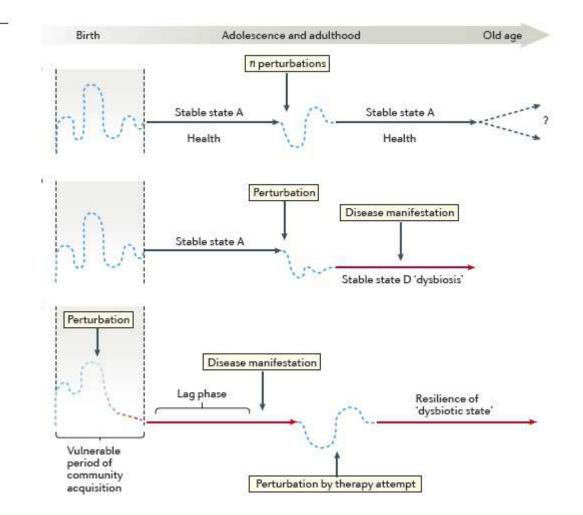
IPA EU Resilience Project Team

Sylvie Binda (Lallemand Health Solutions)

David Obis (Danone) Artur Ouwehand (IFF) Bruno Pot (Yakult)

Questions?

OPINION



The resilience of the intestinal microbiota influences health and disease

Felix Sommer, Jacqueline Moltzau Anderson, Richa Bharti, Jeroen Raes and Philip Rosenstiel

Review paper, terms, resilience has key role in health and disease. Concepts & mecanisms illustration. Understanding resilience is key.

Schematic representation of resilience and health and disease

"Among the most important questions in need of attention, what are the features of microbial diversity most desired for states of health in humans? How are these features most effectively measured? What disturbance regimes are most desired, and what range of disturbance regimes is tolerated during states of health? What are the microbial ecosystem services of greatest relevance to the wide variety of human states of health? In humans at risk for disease linked to disrupted microbial communities, such as Crohn's disease, are flares of disease associated with (or due to) loss of microbial community resilience? Can we anticipate flares by detecting early degradation of the stability landscape, or predict treatment failures by identifying a 'catastrophic regime shift'?"

(**Relman DA**. The human microbiome: ecosystem resilience and health. *Nutr Rev.* **2012**;70 Suppl 1(Suppl 1):S2-S9.)

What are the possible means of interventions ?

Probiotics (included dietary microbes)

Fibers ?

....ability to adapt and self-manage in the face of social, physical and emotional challenges

BMJ 2011;343:d4163 doi: 10.1136/bmj.d4163

How should we define health?

The WHO definition of health as complete wellbeing is no longer fit for purpose given the rise of chronic disease. **Machteld Huber and colleagues** propose changing the emphasis towards the ability to adapt and self manage in the face of social, physical, and emotional challenges

Machteld Huber senior researcher¹, J André Knottnerus president, Scientific Council for Government Policy ², Lawrence Green editor in chief, Oxford Bibliographies Online—public health³, Henriëtte van der Horst head ⁴, Alejandro R Jadad professor⁵, Daan Kromhout vice president, Health Council of the Netherlands⁵, Brian Leonard professor⁷, Kate Lorig professor⁸, Maria Isabel Loureiro coordinator for health promotion and protection⁹, Jos W M van der Meer professor¹⁰, Paul Schnabel director ¹¹, Richard Smith director¹², Chris van Weel head ¹³, Henk Smid director ¹⁴